The Housekeeper and the Professor

The Housekeeper and the Professor

Book - 2009
Average Rating:
Rate this:
32
11
1

Yoko Ogawa's The Housekeeper and the Professor is an enchanting story about what it means to live in the present, and about the curious equations that can create a family.

He is a brilliant math Professor with a peculiar problem--ever since a traumatic head injury, he has lived with only eighty minutes of short-term memory.

She is an astute young Housekeeper--with a ten-year-old son--who is hired to care for the Professor.
And every morning, as the Professor and the Housekeeper are introduced to each other anew, a strange and beautiful relationship blossoms between them. Though he cannot hold memories for long (his brain is like a tape that begins to erase itself every eighty minutes), the Professor's mind is still alive with elegant equations from the past. And the numbers, in all of their articulate order, reveal a sheltering and poetic world to both the Housekeeper and her young son. The Professor is capable of discovering connections between the simplest of quantities--like the Housekeeper's shoe size--and the universe at large, drawing their lives ever closer and more profoundly together, even as his memory slips away.

Publisher: New York : Picador, 2009
Edition: First Picador edition
ISBN: 9780312427801
0312427808
Branch Call Number: FIC OGAWA 2009
Characteristics: 180 pages : illustrations ; 21 cm
Additional Contributors: Snyder, Stephen 1957-

Opinion

From the critics


Community Activity

Comment

Add a Comment
r
reader1809
Sep 05, 2020

a Betsy Kreisle suggestion

CMLibrary_RGulledge Aug 15, 2020

Admittedly, I judged this book by its cover when I first picked it up - with its sakura blossom branches and simple, straight-forward title - fully expecting it to be a light and airy romance. While I didn't get quite what I wanted, I did get a much more heartfelt experience.

The author utilizes a very unique concept that molds this novella into less of a story and more so a wealth of momentary glances of these characters developing their relationships with one-another, as it's told through simple and clean prose that sets a scene like so few authors can.

l
LadyDi52
Aug 12, 2020

Sweet story. The professor is a mathematical genius who has lost his memory, so the housekeeper has to re-introduce herself every time she shows up.

l
lissa_adamson
Jun 20, 2020

Lovely story. Very glad it was chosen for book club!

c
ckapadia
Feb 26, 2020

Formwise I get what the author is doing, and yes that's cool, but this was a book club book I read out of necessity rather than desire. I spent the entire book worrying about this poor woman who gets neglected and mistreated, if the book is about this beautiful friendship between a young boy and an old man, why is it told from the mother's perspective? I was getting strong Good Earth vibes from this, I ended up sympathizing with her and disliking everyone else as a result.

CCPL_Carly Feb 03, 2020

Sweet with an underlying sadness, the author's quietly poetic writing shines through even in translation. This short novel is filled with moments of kindness and lessons about what really matters in life.

s
seggar
Jan 15, 2020

book group? Under 200 pages

s
st_bridgid_irish
Aug 09, 2019

Ever since a terrible car accident in 1975, the professor can only remember the last 80 minutes of his life. The housekeeper is the tenth to come and work for him, and she, like her predecessors, finds him eccentric at first, but over time, comes to consider him a valuable friend. This is largely due to her son, nicknamed Root because his flat head looks like a square root sign. Upon hearing of the boy, the professor, who has a heightened concern for children, demands he be brought along when the housekeeper works, and he develops a strong attraction to him, and through him, the housekeeper herself. This brings him out of his chosen solitude and leads him to teach both of them about the beauty of math, his chosen subject. They also bond over a shared love of baseball, although here the professor’s short memory poses the problem–he still imagines the players of their favorite team as those who played in 1975. The ending is to be expected, but still sad when it comes.
I’m not a big reader of realistic fiction, as it usually takes some sci-fi or fantasy elements to keep my attention, but I decided to read this book after I found it while searching for Japanese authors. Despite its genre I still found it compelling–I kept wondering what the professor would do next and how the little makeshift family would stay together in the face of the memory obstacle. It’s a feel-good book written in a smoothly flowing style, and I am planning on recommending it to my mother to read as well.

s
SCL_BookClubs
Feb 28, 2018

Our Art Lovers Book Club discussed Ogawa's understated novel on Sunday, February 25th, 2018 and it was unanimously rated highly by all 12 members!
Some people skipped over the math but many took the time to work through some of the problems and saw them as metaphors for some of the themes in the book.

KCLSCarrie Aug 03, 2017

A short and simple slice-of-life story, but completely engrossing. A young, unwed mother takes a job as a housekeeper for a brilliant professor of mathematics who only has eighty minutes of short-term memory. She reintroduces herself to him each morning, and he pins notes all over his suit to try and give himself context for his day. The professor insists that her son come over after school instead of being home by himself, and the son and the professor bond over baseball.

View All Comments

Quotes

Add a Quote
j
jimg2000
Mar 01, 2016

"Someone once wrote that worrying is the hardest thing about being a parent."
===
"So who was it? Who discovered zero?" "An Indian mathematician; we don't know his name. The ancient Greeks thought there was no need to count something that was nothing. And since it was nothing, they held that it was impossible to express it as a figure. So someone had to overcome this reasonable assumption, someone had to figure out how to express nothing as a number. This unknown man from India made nonexistence exist. Extraordinary, don't you think?"
===
"But the most marvelous thing about zero is not that it's a sign or a measurement, but that it's a real number all by itself. It's the number that's one less than 1, the smallest of the natural numbers. Despite what the Greeks might have thought, zero doesn't disturb the rules of calculation; on the contrary, it brings greater order to them..."

j
jimg2000
Mar 01, 2016

Of course, lots of mathematical discoveries have practical applications, no matter how esoteric they may seem. Research on ellipses made it possible to determine the orbits of the planets, and Einstein used non-Euclidean geometry to describe the form of the universe. Even prime numbers were used during the war to create codes—to cite a regrettable example. But those things aren't the goal of mathematics. The only goal is to discover the truth." The Professor always said the word truth in the same tone as the word mathematics.
===
"For all natural numbers greater than 3, there exist no integers x, y, and z, such that: x^n + y^n = z^n.
===
If you added 1 to e elevated to the power of π times i, you got 0: e^πi + 1 = 0.
Though there was no circle in evidence, π had descended from somewhere to join hands with e. There they rested, slumped against each other, and it only remained for a human being to add 1, and the world suddenly changed. Everything resolved into nothing, zero.

j
jimg2000
Mar 01, 2016

"I'll show you one more thing about perfect numbers," he said, swinging the branch and drawing his legs under the bench to make more room on the ground. "You can express them as the sum of consecutive natural numbers." 6 = 1 + 2 + 3; 28 = 1 + 2 + 3 + 4 + 5 + 6 + 7; 496 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20 + 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 30 + 31
===
Two is the only even prime. It's the leadoff batter for the infinite team of prime numbers after it.
===
And, the sum of the prime factors of 714 equals the sum of the prime factors of 715: 714 = 2 × 3 × 7 × 17; 715 = 5 × 11 × 13; 2 + 3 + 7 + 17 = 5 + 11 + 13 = 29. A pair of consecutive whole numbers with these properties is quite rare. There are only 26 such pairs up to 20,000. This one is the Ruth-Aaron pair. Just like prime numbers, they are more rare as the numbers get larger. And 5 and 6 are the smallest pair.

j
jimg2000
Mar 01, 2016

"The truly correct proof is one that strikes a harmonious balance between strength and flexibility. There are plenty of proofs that are technically correct but are messy and inelegant or counterintuitive. But it's not something you can put into words—explaining why a formula is beautiful is like trying to explain why the stars are beautiful."
===
The sum of the factors of 220 is 284, and the sum of the factors of 284 is 220. They're called 'amicable numbers,' and they're extremely rare. Fermat and Descartes were only able to find one pair each.
===
the sums of the divisors of numbers other than perfect numbers are either greater or less than the numbers themselves. When the sum is greater, it's called an 'abundant number,' and when it's less, it's a 'deficient number.' Marvelous names, don't you think? The divisors of 18 is 1 + 2 + 3 + 6 + 9 = 21, so it's an abundant number. But 14 is deficient: 1 + 2 + 7 = 10."

j
jimg2000
Mar 01, 2016

"If n is a natural number, then any prime can be expressed as either 4n + 1 or 4n - 1. It's always one or the other." "All of those numbers, those infinite primes, can all be divided into two groups?" "Take 13, for example ..." "That would be 4 × 3 + 1," Root said. "That's right. And 19?" "4 × 5 - 1." "Exactly!" The Professor nodded. "And there's more to it: the numbers in the first group can always be expressed as the sum of two squares, but those in the second can never be." "So, 13 = 2^2 + 3^2."
===
He had a special feeling for what he called the "correct miscalculation," for he believed that mistakes were often as revealing as the right answers.
===
"It's sometimes called the 'Queen of Mathematics,' " he said, after taking a sip of his coffee. "Noble and beautiful, like a queen, but cruel as a demon. In other words, I studied the whole numbers we all know, 1, 2, 3, 4, 5, 6, 7 ... and the relationships between them."

s
sky123
Jun 24, 2015

... 28=1+2+3+4+5+6+7 ... The subtle formula for the Artin conjecture and the plain line of the factors for the number 28 blended seemlessly, surrounding us where we sat on the bench. The figures became stitches in the elaborate pattern women in the dirt. I sat utterly still, afraid I might accidentally erase part of the design. It seemed as though the secret of the universe had miraculously appeared right here at our feet, as though God's notebook had opened under our bench... p46

203arlington Jul 22, 2014

Math has proven the existence of God because it is absolute and without contradiction; but the devil must exist as well, because we cannot prove it.

j
jkrambeck
Jul 27, 2013

“The Professor never really seemed to care whether we figured out the right answer to a problem. He preferred our wild, desperate guesses to silence, and he was even more delighted when those guesses led to new problems that took us beyond the original one. He had a special feeling for what he called the "correct miscalculation," for he believed that mistakes were often as revealing as the right answers.”

j
jkrambeck
Jul 27, 2013

“Soon after I began working for the Professor, I realized that he talked about numbers whenever he was unsure of what to say or do. Numbers were also his way of reaching out to the world. They were safe, a source of comfort.”

j
jkrambeck
Jul 27, 2013

“Solving a problem for which you know there’s an answer is like climbing a mountain with a guide, along a trail someone else has laid. In mathematics, the truth is somewhere out there in a place no one knows, beyond all the beaten paths. And it’s not always at the top of the mountain. It might be in a crack on the smoothest cliff or somewhere deep in the valley.”

View All Quotes

Summary

Add a Summary
j
jkrambeck
Jul 27, 2013

He is a brilliant math Professor with a peculiar problem--ever since a traumatic head injury, he has lived with only eighty minutes of short-term memory. She is an astute young Housekeeper, with a ten-year-old son, who is hired to care for him. And every morning, as the Professor and the Housekeeper are introduced to each other anew, a strange and beautiful relationship blossoms between them. Though he cannot hold memories for long (his brain is like a tape that begins to erase itself every eighty minutes), the Professor’s mind is still alive with elegant equations from the past. And the numbers, in all of their articulate order, reveal a sheltering and poetic world to both the Housekeeper and her young son. The Professor is capable of discovering connections between the simplest of quantities--like the Housekeeper’s shoe size--and the universe at large, drawing their lives ever closer and more profoundly together, even as his memory slips away. The Housekeeper and the Professor is an enchanting story about what it means to live in the present, and about the curious equations that can create a family

Age

Add Age Suitability

There are no ages for this title yet.

Notices

Add Notices

There are no notices for this title yet.

Explore Further

Browse by Call Number

Recommendations

Subject Headings

  Loading...

Find it at SPL

  Loading...
[]
[]
To Top